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The intramolecular nucleophilic addition of �-sulfinyl carb-
anions derived from the corresponding sulfinyl lactams
afforded 1-azabicyclo[m.n.0]alkenes in good yields.

The 1-azabicyclo[m.n.0]alkane framework is an important
structural assembly in a number of heterocyclic systems,
especially alkaloid natural products possessing biological
activities such as pyrrolidine,1,2 indolizidine and quinolizidine
alkaloids,3,4 and (�)-tuberostemonine.5,6 Despite the fact that
various synthetic strategies have been developed for these
classes of compounds, an efficient, general construction is still
regarded as an important synthetic challenge.

Our ongoing interest in cyclisation reactions based on
α-sulfinyl carbanion 7 prompted us to search for a general entry
to 1-azabicyclo[m.n.0]alkanes 1 starting from simple lactams.
As shown in Fig. 1, it occurred to us that the construction of a
framework such as 1 should be achievable by annulation onto
lactams 2 by consecutive N–C and C–C bond formations
employing 3-bromo-1-phenylsulfinylpropane and 4-bromo-1-
phenylsulfinylbutane as 3- and 4-carbon building blocks for 1,3-
and 1,4-dipole moieties, respectively. In this communication,
we report our preliminary results for the preparation of
1-azabicyclo[m.n.0]alkanes 1 utilizing such a concept. Thus,
N-phenylthioalkylation of lactam 2 with 3-phenylsulfanyl-1-
bromopropane or 4-phenylsulfanyl-1-bromobutane employing
NaH in N,N-dimethylformamide (DMF) at 0 �C to rt afforded
sulfides 3 (Scheme 1).

Conversion of the sulfides 3a and 3b to the corresponding
sulfides 4a and 4b could be accomplished by lithiation with
lithium diisopropylamide (LDA, 1.1 equiv.) in tetrahydrofuran
(THF) at �78 �C, followed by treatment with methyl iodide
(1.1 equiv., �78 to 0 �C, overnight). The sulfides 3 and 4 were
then oxidized with NaIO4 in aqueous methanol at 0 �C to
provide the requisite sulfoxides 5a–f in good yields as listed in
Table 1. The study for the cyclisation of the sulfoxides 5 to
1-azabicyclic compound 8 was carried out with compound 5a
to find the optimum conditions. It was found that cyclisation
of 5a to 8a could be smoothly effected by employing lithium
hexamethyldisilazide (LiHMDS) (1.1 to 2.0 equiv.) in tetra-
hydrofuran (THF) at �78 �C to rt (overnight), the expected
product 8a 8 could be obtained in 85–90% yield after column
chromatography on silica gel. The use of lithium diisopropyl-
amide as a base for the cyclisation under the same conditions
afforded less satisfactory results. It was evident that the initially

Fig. 1

formed α-sulfinyl carbanion 6 underwent intramolecular
nucleophilic addition to the carbonyl group of the lactam
moiety to provide an intermediate 7 after quenching the
reaction with water. Elimination of a water molecule from 7
gave 1-azabicyclic compound 8.

As summarized in Table 1 (entries 1–6),9 1-azabicyclic com-
pounds 8a–f could be synthesized in good yields. Cyclisation of
5g and 5h under the standard conditions proceeded cleanly to
the expected products of type 8 as indicated by TLC and 1H
NMR analyses of the crude products. However, purification of
these cyclised products was troublesome and low yields were
obtained due to decomposition at rt. Therefore, the crude
products were further subjected to reduction by using NaBH4

in methanol to 9a and 9b in 65 and 68% yields, respectively.
We considered that the presence of the sulfoxide group in
compounds 8 and 9 would lead to synthetic manipulation on
various 1-azabicyclic skeletons.

In summary, we have demonstrated a new general strategy to
1-azabicyclo[m.n.0]-alkenes and -alkanes via the intramolecular
nucleophilic addition of α-sulfinyl carbanion to the carbonyl
group of lactam ring. This method provided not only a
convenient 3-carbon and 4-carbon annulation onto lactams,
but also the facile introduction of an α-substituent onto the

Scheme 1 Reagents and conditions: (i) NaH, DMF, BrCH2(CH2)n-
CH2SPh, 0 �C to rt, overnight; (ii) LDA, THF, �78 �C; then CH3I,
�78 �C to rt, overnight; (iii) NaIO4, aq. MeOH, 0 �C, overnight; (iv)
LiHMDS, THF, �78 �C to rt, overnight, then quenched with H2O; (v)
�H2O; (vi) NaBH4, MeOH, 5–10 �C, 2 h.
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Table 1 Preparation of 1-azabicyclic compounds 8 and 9

Entry Lactam 2 Sulfide 3 or 4 (%) a, b Sulfoxide 5 (%) a, b m, n in 3, 4 and 5 Products 8 and 9 (%) a, b

1 3a (85%) 5a, R = H (95%) m = 1, n = 2 8a (85–90%)

2 3b (80%) 5b, R = H (95%) m = 2, n = 2 8b (89%)

3 3c (85%) 5c, R = H (92%) m = 3, n = 2 8c (87%)

4 3d (80%) 5d, R = H (94%) m = 4, n = 2 8d (85%)

5 4a (81%) 5e, R = Me (96%) m = 1, n = 2 8e (85%) c

6 4b (80%) 5f, R = Me (95%) m = 2, n = 2 8f (87%) c

7 3e (87%) 5g, R = H (86%) m = 2, n = 1 9a (65%) c, d

8 3f (74%) 5h, R = H (86%) m = 3, n = 1 9b (68%) c, d

a Isolated yields by column chromatography (SiO2, 2% MeOH in EtOAc containing 0.2% NH4OH solution). b All compounds were characterized
by 1H NMR, 13C NMR, IR, MS, and elemental analyses or HMRS. c Obtained as a mixture of diastereomers. d Overall yields based on compounds
5g and 5h. 

original lactam ring, the structural feature found in many
natural products.

Furthermore, the developed strategy should provide a general
solution for the syntheses of various classes of 1-azabicyclic
alkaloids, such as indolizidines and quinolizidines. Extension
of this methodology is currently under investigation and will be
reported in due course.
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(silica gel, 2% methanol in ethyl acetate containing 0.2% NH4OH
solution) to afford 8a (0.6307 g, 85% yield) as a pale yellow liquid.
HRMS (FAB�) found: 247.1025, C14H17NOS requires 247.1027; IR
νmax (film)/cm�1: 3049, 2925, 2855, 1613, 1579, 1496, 1442, 1352, 1296,
1211, 1198, 1129, 1092, 1079, 1020, 996, 913, 930, 888, 817, 750, 693;
1H NMR δH (300 MHz; CDCl3; Me4Si): 7.48, 7.36 and 7.28 (each m,
5H, ArH ), 3.24 and 3.03 [each m, 5H, 2 × CH2N and CHHC(N)��C],

2.85 [dt, J 16, 8 Hz, 1H, CHHC(N)��C], 2.21 [dt, J 14.9, 6 Hz, 1H,
CHHC��C(N)], 1.92 [quint, J 7.3 Hz, 2H, CH2CH2C(N)��C], 1.72
[m, 2H, CH2CH2C��C(N)], 1.49 [m, 1H, CHHCC��C(N)]. 13C NMR
δC (75 MHz; CDCl3; Me4Si) 155.30, 144.35, 128.91, 128.37, 124.92,
95.54, 52.62, 44.40, 29.31, 21.52, 21.15, 16.37. MS: m/z (EI) 248
(M� � 1, 3%), 231 (4%), 199 (67%), 170 (51%), 120 (100%), 108 (6%),
92 (8%), 80 (5%), 77 (4%), 65 (5%).

3497O r g .  B i o m o l .  C h e m . , 2 0 0 3 , 1,  3 4 9 5 – 3 4 9 7


